Effective Choice and Boundedness Principles in Computable Analysis

نویسندگان

  • Vasco Brattka
  • Guido Gherardi
چکیده

In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or computable relations between such operations is Weihrauch reducibility and the partially ordered degree structure induced by it. We have identified certain choice principles such as co-finite choice, discrete choice, interval choice, compact choice and closed choice, which are cornerstones among Weihrauch degrees and it turns out that certain core theorems in analysis can be classified naturally in this structure. In particular, we study theorems such as the Intermediate Value Theorem, the Baire Category Theorem, the Banach Inverse Mapping Theorem, the Closed Graph Theorem and the Uniform Boundedness Theorem. We also explore how existing classifications of the Hahn-Banach Theorem and Weak Kőnig’s Lemma fit into this picture. Well-known omniscience principles from constructive mathematics such as LPO and LLPO can also naturally be considered as Weihrauch degrees and they play an important role in our classification. Based on this we compare the results of our classification with existing classifications in constructive and reverse mathematics and we claim that in a certain sense our classification is finer and sheds some new light on the computational content of the respective theorems. Our classification scheme does not require any particular logical framework or axiomatic setting, but it can be carried out in the framework of classical mathematics using tools of topology, computability theory and computable analysis. We develop a number of separation techniques based on a new parallelization principle, on certain invariance properties of Weihrauch reducibility, on the Low Basis Theorem of Jockusch and Soare and based on the Baire Category Theorem. Finally, we present a number of metatheorems that allow to derive upper bounds for the classification of the Weihrauch degree of many theorems and we discuss the Brouwer Fixed Point Theorem as an example. §

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computability of Banach Space Principles

We investigate the computable content of certain theorems which are sometimes called the “principles” of the theory of Banach spaces. Among these the main theorems are the Open Mapping Theorem, the Closed Graph Theorem and the Uniform Boundedness Theorem. We also study closely related theorems, as Banach’s Inverse Mapping Theorem, the Theorem on Condensation of Singularities and the BanachStein...

متن کامل

Computable Versions of the Uniform Boundedness Theorem

We investigate the computable content of the Uniform Boundedness Theorem and of the closely related Banach-Steinhaus Theorem. The Uniform Boundedness Theorem states that a pointwise bounded sequence of bounded linear operators on Banach spaces is also uniformly bounded. But, given the sequence, can we also effectively find the uniform bound? It turns out that the answer depends on how the seque...

متن کامل

On the Arithmetical Content of Restricted Forms of Comprehension, Choice and General Uniform Boundedness

In this paper the numerical strength of fragments of arithmetical comprehension, choice and general uniform boundedness is studied systematically. These principles are investigated relative to base systems T ω n in all finite types which are suited to formalize substantial parts of analysis but nevertheless have provably recursive function(al)s of low growth. We reduce the use of instances of t...

متن کامل

Closed Choice and a Uniform Low Basis Theorem

We study closed choice principles for different spaces. Given information about what does not constitute a solution, closed choice determines a solution. We show that with closed choice one can characterize several models of hypercomputation in a uniform framework using Weihrauch reducibility. The classes of functions which are reducible to closed choice of the singleton space, of the natural n...

متن کامل

Dagstuhl - Seminar 99461 on Computability and Complexity in Analysis

Variants of Computable Analysis and Realizability Andrej Bauer Carnegie Mellon University, Pittsburgh, USA There are several schools of computable analysis, among others: recursive analysis, type II computability, effective domains, effective T0-spaces, effectively given continuous domains, effective equilogical spaces, and BlumSmale-Shub Real Numbers Machine. In this talk I show that all of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bulletin of Symbolic Logic

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2009